Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 559
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769041

RESUMO

The gut microbiota is involved in the development of the immune system and can modulate the risk for immune-mediated disorders such as multiple sclerosis (MS). Dysbiosis has been demonstrated in MS patients and its restoration by disease-modifying treatments (DMTs) is hypothesized. We aimed to study the changes in gut microbiota composition during the first 6 months of treatment with dimethyl fumarate (DMF), an oral DMT, and to identify the microorganisms associated with DMF side effects. We collected and analyzed the gut microbiota of 19 MS patients at baseline and after 1, 3, and 6 months of DMF treatment. We then cross-sectionally compared gut microbiota composition according to the presence of gastrointestinal (GI) symptoms and flushing. Overall, the gut microbiota biodiversity showed no changes over the 6-month follow-up. At the genus level, DMF was associated with decreased Clostridium abundance after 6 months. In subjects reporting side effects, a higher abundance of Streptococcus, Haemophilus, Clostridium, Lachnospira, Blautia, Subdoligranulum, and Tenericutes and lower of Bacteroidetes, Barnesiella, Odoribacter, Akkermansia, and some Proteobacteria families were detected. Our results suggest that gut microbiota may be involved in therapeutic action and side effects of DMF, representing a potential target for improving disease course and DMT tolerability.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Gastroenteropatias , Microbioma Gastrointestinal , Esclerose Múltipla , Humanos , Fumarato de Dimetilo/efeitos adversos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/microbiologia , Gastroenteropatias/tratamento farmacológico , Bacteroidetes , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Imunossupressores/uso terapêutico
2.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430144

RESUMO

There is a growing body of evidence highlighting there are significant changes in the gut microbiota composition and relative abundance in various neurological disorders. We performed a systematic review of the different microbiota altered in a wide range of neurological disorders (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis, and stroke). Fifty-two studies were included representing 5496 patients. At the genus level, the most frequently involved microbiota are Akkermansia, Faecalibacterium, and Prevotella. The overlap between the pathologies was strongest for MS and PD, sharing eight genera (Akkermansia, Butyricicoccus, Bifidobacterium, Coprococcus, Dorea, Faecalibacterium, Parabacteroides, and Prevotella) and PD and stroke, sharing six genera (Enterococcus, Faecalibacterium, Lactobacillus, Parabacteroides, Prevotella, and Roseburia). The identification signatures overlapping for AD, PD, and MS raise the question of whether these reflect a common etiology or rather common consequence of these diseases. The interpretation is hampered by the low number and low power for AD, ALS, and stroke with ample opportunity for false positive and false negative findings.


Assuntos
Microbioma Gastrointestinal , Microbiota , Esclerose Múltipla , Doenças do Sistema Nervoso , Doença de Parkinson , Acidente Vascular Cerebral , Humanos , Doença de Parkinson/microbiologia , Akkermansia , Esclerose Múltipla/microbiologia , Prevotella , Clostridiaceae , Clostridiales
3.
Microbiome ; 10(1): 174, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253847

RESUMO

BACKGROUND: The gut microbiome plays an important role in autoimmunity including multiple sclerosis and its mouse model called experimental autoimmune encephalomyelitis (EAE). Prior studies have demonstrated that the multiple sclerosis gut microbiota can contribute to disease, hence making it a potential therapeutic target. In addition, antibiotic treatment has been shown to ameliorate disease in the EAE mouse model of multiple sclerosis. Yet, to this date, the mechanisms mediating these antibiotic effects are not understood. Furthermore, there is no consensus on the gut-derived bacterial strains that drive neuroinflammation in multiple sclerosis. RESULTS: Here, we characterized the gut microbiome of untreated and vancomycin-treated EAE mice over time to identify bacteria with neuroimmunomodulatory potential. We observed alterations in the gut microbiota composition following EAE induction. We found that vancomycin treatment ameliorates EAE, and that this protective effect is mediated via the microbiota. Notably, we observed increased abundance of bacteria known to be strong inducers of regulatory T cells, including members of Clostridium clusters XIVa and XVIII in vancomycin-treated mice during the presymptomatic phase of EAE, as well as at disease peak. We identified 50 bacterial taxa that correlate with EAE severity. Interestingly, several of these taxa exist in the human gut, and some of them have been implicated in multiple sclerosis including Anaerotruncus colihominis, a butyrate producer, which had a positive correlation with disease severity. We found that Anaerotruncus colihominis ameliorates EAE, and this is associated with induction of RORγt+ regulatory T cells in the mesenteric lymph nodes. CONCLUSIONS: We identified vancomycin as a potent modulator of the gut-brain axis by promoting the proliferation of bacterial species that induce regulatory T cells. In addition, our findings reveal 50 gut commensals as regulator of the gut-brain axis that can be used to further characterize pathogenic and beneficial host-microbiota interactions in multiple sclerosis patients. Our findings suggest that elevated Anaerotruncus colihominis in multiple sclerosis patients may represent a protective mechanism associated with recovery from the disease. Video Abstract.


Assuntos
Encefalomielite Autoimune Experimental , Microbioma Gastrointestinal , Esclerose Múltipla , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Butiratos , Clostridiales , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/microbiologia , Doenças Neuroinflamatórias , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Vancomicina/uso terapêutico
4.
Front Immunol ; 13: 972160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045671

RESUMO

The etiological complexity of multiple sclerosis, an immune-mediated, neurodegenerative disease with multifactorial etiology is still elusive because of an incomplete understanding of the complex synergy between contributing factors such as genetic susceptibility and aberrant immune response. Recently, the disease phenotypes have also been shown to be associated with dysbiosis of the gut microbiome, a dynamic reservoir of billions of microbes, their proteins and metabolites capable of mimicring the autoantigens. Microbial factors could potentially trigger the neuroinflammation and symptoms of MS. In this perspective article, we discussed how microbial molecules resulting from a leaky gut might mimic a host's autoantigen, potentially contributing to the disease disequilibrium. It further highlights the importance of targeting the gut microbiome for alternate therapeutic options for the treatment of MS.


Assuntos
Microbioma Gastrointestinal , Esclerose Múltipla , Doenças Neurodegenerativas , Autoantígenos , Disbiose/complicações , Microbioma Gastrointestinal/fisiologia , Humanos , Mimetismo Molecular , Esclerose Múltipla/microbiologia
6.
Clin Immunol ; 235: 108693, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33556564

RESUMO

Recent observations suggest that Gal antigen content in gut microbiota and anti-Gal antibody response may influence inflammation in immune related disorders. In this review we summarized the current knowledge on antibody response to the Gal epitope in various immune disorders. We discuss the origin of Gal antigen associated to gut microbiota. In multiple sclerosis, the possible mechanisms by which the altered microbiota and/or circulating anti-Gal level could affect the immune response in this disease are presented.


Assuntos
Anticorpos/metabolismo , Galactose/imunologia , Doenças do Sistema Imunitário/metabolismo , Esclerose Múltipla/metabolismo , Animais , Galactose/química , Galactose/metabolismo , Humanos , Doenças do Sistema Imunitário/imunologia , Esclerose Múltipla/microbiologia
7.
Ann Clin Transl Neurol ; 8(12): 2252-2269, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34889081

RESUMO

OBJECTIVE: To examine the gut microbiota in individuals with and without pediatric-onset multiple sclerosis (MS). METHODS: We compared stool-derived microbiota of Canadian Pediatric Demyelinating Disease Network study participants ≤21 years old, with MS (disease-modifying drug [DMD] exposed and naïve) or monophasic acquired demyelinating syndrome [monoADS] (symptom onset <18 years), and unaffected controls. All were ≥30 days without antibiotics or corticosteroids. V4 region 16S RNA gene-derived amplicon sequence variants (Illumina MiSeq) were assessed using negative binomial regression and network analyses; rate ratios were age- and sex-adjusted (aRR). RESULTS: Thirty-two MS, 41 monoADS (symptom onset [mean] = 14.0 and 6.9 years) and 36 control participants were included; 75%/56%/58% were female, with mean ages at stool sample = 16.5/13.8/15.1 years, respectively. Nine MS cases (28%) were DMD-naïve. Although microbiota diversity (alpha, beta) did not differ between participants (p > 0.1), taxa-level and gut community networks did. MS (vs. monoADS) exhibited > fourfold higher relative abundance of the superphylum Patescibacteria (aRR = 4.2;95%CI:1.6-11.2, p = 0.004, Q = 0.01), and lower abundances of short-chain fatty acid (SCFA)-producing Lachnospiraceae (Anaerosporobacter) and Ruminococcaceae (p, Q < 0.05). DMD-naïve MS cases were depleted for Clostridiales vadin-BB60 (unnamed species) versus either DMD-exposed, controls (p, Q < 0.01), or monoADS (p = 0.001, Q = 0.06) and exhibited altered community connectedness (p < 10-9 Kruskal-Wallis), with SCFA-producing taxa underrepresented. Consistent taxa-level findings from an independent US Network of Pediatric MS Centers case/control (n = 51/42) cohort included >eightfold higher abundance for Candidatus Stoquefichus and Tyzzerella (aRR = 8.8-12.8, p < 0.05) in MS cases and 72%-80% lower abundance of SCFA-producing Ruminococcaceae-NK4A214 (aRR = 0.38-0.2, p ≤ 0.01). INTERPRETATION: Gut microbiota community structure, function and connectivity, and not just individual taxa, are of likely importance in MS.


Assuntos
Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/microbiologia , Microbioma Gastrointestinal , Esclerose Múltipla/microbiologia , Adolescente , Canadá , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Biologia Computacional , Feminino , Humanos , Masculino , RNA Ribossômico 16S
8.
PLoS One ; 16(11): e0260384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34847159

RESUMO

BACKGROUND: Microorganisms in oral cavity are called oral microbiota, while microbiome consists of total genome content of microorganisms in a host. Interaction between host and microorganisms is important in nervous system development and nervous diseases such as Autism, Alzheimer, Parkinson and Multiple Sclerosis (MS). Bacterial infections, as an environmental factor in MS pathogenesis play role in T helper 17(Th17) increase and it enhancing the production of pro-inflammatory cytokines such as Interlukin-21(IL-21), IL-17 and IL -22. Oral microbiota consists diverse populations of cultivable and uncultivable bacterial species. Denaturing gradient gel electrophoresis (DGGE) is an acceptable method for identification of uncultivable bacteria. In this study, we compared the bacterial population diversity in the oral cavity between MS and healthy people. METHODS: From October to March 2019, samples were taken at Kermanshah University of Medical Sciences' MS patients center. A total of 30 samples were taken from MS patients and another 30 samples were taken from healthy people. Phenotypic tests were used to identify bacteria after pure cultures were obtained. DNA was extracted from 1 mL of saliva, and PCR products produced with primers were electrophoresed on polyacrylamide gels. RESULTS: The genera Staphylococcus, Actinomyces, Fusobacterium, Bacteroides, Porphyromonas, Prevotella, Veillonella, Propionibacterium and uncultivable bacteria with accession number MW880919-25, JQ477416.1, KF074888.1 and several other un-culturable strains were significantly more abundant in the MS group while Lactobacillus and Peptostreptococcus were more prevalent in the normal healthy group according to logistic regression method. CONCLUSION: Oral micro-organisms may alleviate or exacerbate inflammatory condition which impact MS disease pathogenesis. It may be assumed that controlling oral infections may result in reduction of MS disease progression.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Boca/microbiologia , Esclerose Múltipla/microbiologia , Adulto , Bactérias/genética , Feminino , Humanos
10.
Front Immunol ; 12: 728677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691035

RESUMO

Multiple Sclerosis (MS) is an inflammatory disease of the central nervous system. Sardinia, an Italian island, is one of the areas with the highest global prevalence of MS. Genetic factors have been widely explored to explain this greater prevalence among some populations; the genetic makeup of the Sardinians appears to make them more likely to develop autoimmune diseases. A strong association between MS and some infections have been reported globally. The most robust evidence indicating the role of infections is MS development concerns the Epstein-Barr virus (EBV). Anti-EBV antibodies in patients once infected by EBV are associated with the development of MS years later. These features have also been noted in Sardinian patients with MS. Many groups have found an increased expression of the Human endogenous retroviruses (HERV) family in patients with MS. A role in pathogenesis, prognosis, and prediction of treatment response has been proposed for HERV. A European multi-centre study has shown that their presence was variable among populations, ranging from 59% to 100% of patients, with higher HERV expression noted in Sardinian patients with MS. The mycobacterium avium subspecies paratuberculosis (MAP) DNA and antibodies against MAP2694 protein were found to be associated with MS in Sardinian patients. More recently, this association has also been reported in Japanese patients with MS. In this study, we analysed the role of infectious factors in Sardinian patients with MS and compared it with the findings reported in other populations.


Assuntos
Autoimunidade , Infecções por Vírus Epstein-Barr/epidemiologia , Saúde Global , Esclerose Múltipla/epidemiologia , Paratuberculose/epidemiologia , Infecções por Retroviridae/epidemiologia , Retrovirus Endógenos/imunologia , Retrovirus Endógenos/patogenicidade , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Itália/epidemiologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/microbiologia , Esclerose Múltipla/virologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Mycobacterium avium subsp. paratuberculosis/patogenicidade , Paratuberculose/imunologia , Paratuberculose/microbiologia , Prognóstico , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia , Medição de Risco , Fatores de Risco
11.
J Neuroimmunol ; 360: 577700, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34482269

RESUMO

Gut microbiota composition may affect the central nervous system (CNS) and immune function. Several studies have recently examined the possible link between gut microbiota composition and multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Most of these studies agree that patients with MS suffer from dysbiosis. Moreover, an altered proportion of certain phyla of bacteria was detected in the digestive tracts of these patients compared to healthy individuals. This review article gathers information from research papers that have examined the relationship between gut microbiota composition and MS and its possible mechanisms.


Assuntos
Eixo Encéfalo-Intestino , Disbiose/complicações , Encefalomielite Autoimune Experimental/microbiologia , Microbioma Gastrointestinal , Esclerose Múltipla/microbiologia , Animais , Eixo Encéfalo-Intestino/imunologia , Eixo Encéfalo-Intestino/fisiologia , Modelos Animais de Doenças , Disbiose/fisiopatologia , Disbiose/terapia , Encefalomielite Autoimune Experimental/fisiopatologia , Transplante de Microbiota Fecal , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Esclerose Múltipla/etiologia , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/terapia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/microbiologia , Probióticos , Ratos , Vitamina D/uso terapêutico
12.
Genes (Basel) ; 12(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34440354

RESUMO

As a complex disease, Multiple Sclerosis (MS)'s etiology is determined by both genetic and environmental factors. In the last decade, the gut microbiome has emerged as an important environmental factor, but its interaction with host genetics is still unknown. In this review, we focus on these dual aspects of MS pathogenesis: we describe the current knowledge on genetic factors related to MS, based on genome-wide association studies, and then illustrate the interactions between the immune system, gut microbiome and central nervous system in MS, summarizing the evidence available from Experimental Autoimmune Encephalomyelitis mouse models and studies in patients. Finally, as the understanding of influence of host genetics on the gut microbiome composition in MS is in its infancy, we explore this issue based on the evidence currently available from other autoimmune diseases that share with MS the interplay of genetic with environmental factors (Inflammatory Bowel Disease, Rheumatoid Arthritis and Systemic Lupus Erythematosus), and discuss avenues for future research.


Assuntos
Microbioma Gastrointestinal , Esclerose Múltipla/genética , Esclerose Múltipla/microbiologia , Animais , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Estudo de Associação Genômica Ampla , Humanos , Camundongos
13.
Ann Clin Transl Neurol ; 8(9): 1867-1883, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34409759

RESUMO

OBJECTIVE: To identify features of the gut microbiome associated with multiple sclerosis activity over time. METHODS: We used 16S ribosomal RNA sequencing from stool of 55 recently diagnosed pediatric-onset multiple sclerosis patients. Microbiome features included the abundance of individual microbes and networks identified from weighted genetic correlation network analyses. Prentice-Williams-Peterson Cox proportional hazards models estimated the associations between features and three disease activity outcomes: clinical relapses and both new/enlarging T2 lesions and new gadolinium-enhancing lesions on brain MRI. Analyses were adjusted for age, sex, and disease-modifying therapies. RESULTS: Participants were followed, on average, 2.1 years. Five microbes were nominally associated with all three disease activity outcomes after multiple testing correction. These included butyrate producers Odoribacter (relapse hazard ratio = 0.46, 95% confidence interval: 0.24, 0.88) and Butyricicoccus (relapse hazard ratio = 0.49, 95% confidence interval: 0.28, 0.88). Two networks of co-occurring gut microbes were significantly associated with a higher hazard of both MRI outcomes (gadolinium-enhancing lesion hazard ratios (95% confidence intervals) for Modules 32 and 33 were 1.29 (1.08, 1.54) and 1.42 (1.18, 1.71), respectively; T2 lesion hazard ratios (95% confidence intervals) for Modules 32 and 33 were 1.34 (1.15, 1.56) and 1.41 (1.21, 1.64), respectively). Metagenomic predictions of these networks demonstrated enrichment for amino acid biosynthesis pathways. INTERPRETATION: Both individual and networks of gut microbes were associated with longitudinal multiple sclerosis activity. Known functions and metagenomic predictions of these microbes suggest the important role of butyrate and amino acid biosynthesis pathways. This provides strong support for future development of personalized microbiome interventions to modify multiple sclerosis disease activity.


Assuntos
Microbioma Gastrointestinal , Esclerose Múltipla/microbiologia , Esclerose Múltipla/fisiopatologia , Adolescente , Criança , Feminino , Seguimentos , Humanos , Masculino , RNA Ribossômico 16S
14.
Front Immunol ; 12: 676016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394076

RESUMO

Over the last 15 years there has been an accumulation of data supporting the concept of a gut-brain axis whereby dysbiosis of the gut microbiota can impact neurological function. Such dysbiosis has been suggested as a possible environmental exposure triggering multiple sclerosis (MS). Dysbiosis has been consistently shown to result in a reduction in short-chain fatty acid (SCFA) producing bacteria and a reduction in stool and plasma levels of propionate has been shown for MS patients independent of disease stage and in different geographies. A wealth of evidence supports the action of propionate on T-cell activity, resulting in decreased T-helper cell 1 (Th1) and T-helper cell 17 (Th17) numbers/activity and increased regulatory T cell (Treg cell) numbers/activity and an overall anti-inflammatory profile. These different T-cell populations play various roles in the pathophysiology of MS. A recent clinical study in MS patients demonstrated that supplementation of propionate reduces the annual relapse rate and slows disease progression. This review discusses this data and the relevant mechanistic background and discusses whether taming of the overactive immune system in MS is likely to allow easier bacterial and viral infection.


Assuntos
Esclerose Múltipla/terapia , Propionatos/administração & dosagem , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Disbiose , Microbioma Gastrointestinal/fisiologia , Humanos , Esclerose Múltipla/imunologia , Esclerose Múltipla/microbiologia , Propionatos/metabolismo , Linfócitos T/imunologia
15.
Gut Microbes ; 13(1): 1943289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264791

RESUMO

The need for alternative treatments for multiple sclerosis (MS) has triggered copious amounts of research into microbial therapies focused on manipulating the microbiota-gut-brain axis. This comprehensive review was intended to present and systematically evaluate the current clinical and preclinical evidence for various probiotic and commensal gut microbial therapies as treatments for MS, using the Bradford Hill criteria (BHC) as a multi-parameter assessment rubric. Literature searches were performed to identify a total of 37 relevant studies (6 human, 31 animal), including 28 probiotic therapy and 9 commensal therapy studies. In addition to presenting qualitative summaries of these findings, therapeutic evidence for each bacterial formulation was assessed using the BHC to generate summative scores. These scores, which encompassed study quality, replication, and other considerations, were used to rank the most promising therapies and highlight deficiencies. Several therapeutic formulations, including VSL#3, Lactobacillus paracasei, Bifidobacterium animalis, E. coli Nissle 1917, and Prevotella histicola, emerged as the most promising. In contrast, a number of other therapies were hindered by limited evidence of replicable findings and other criteria, which need to be addressed by future studies in order to harness gut microbial therapies to ultimately provide cheaper, safer, and more durable treatments for MS.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/microbiologia , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Simbiose/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Resultado do Tratamento
16.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281224

RESUMO

Multiple sclerosis (MS) is a neurodegenerative inflammatory condition mediated by autoreactive immune processes. Due to its potential to influence host immunity and gut-brain communication, the gut microbiota has been suggested to be involved in the onset and progression of MS. To date, there is no definitive cure for MS, and rehabilitation programs are of the utmost importance, especially in the later stages. However, only a few people generally participate due to poor support, knowledge, and motivation, and no information is available on gut microbiota changes. Herein we evaluated the potential of a brief high-impact multidimensional rehabilitation program (B-HIPE) in a leisure environment to affect the gut microbiota, mitigate MS symptoms and improve quality of life. B-HIPE resulted in modulation of the MS-typical dysbiosis, with reduced levels of pathobionts and the replenishment of beneficial short-chain fatty acid producers. This partial recovery of a eubiotic profile could help counteract the inflammatory tone typically observed in MS, as supported by reduced circulating lipopolysaccharide levels and decreased populations of pro-inflammatory lymphocytes. Improved physical performance and fatigue relief were also found. Our findings pave the way for integrating clinical practice with holistic approaches to mitigate MS symptoms and improve patients' quality of life.


Assuntos
Microbioma Gastrointestinal , Esclerose Múltipla/reabilitação , Adulto , Idoso , Translocação Bacteriana , Estudos de Casos e Controles , Estudos de Coortes , Dieta Mediterrânea , Exercício Físico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atenção Plena , Esclerose Múltipla/dietoterapia , Esclerose Múltipla/imunologia , Esclerose Múltipla/microbiologia , Modalidades de Fisioterapia , Projetos Piloto , Subpopulações de Linfócitos T
17.
J Clin Invest ; 131(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196310

RESUMO

The gut-brain axis (GBA) refers to the complex interactions between the gut microbiota and the nervous, immune, and endocrine systems, together linking brain and gut functions. Perturbations of the GBA have been reported in people with multiple sclerosis (pwMS), suggesting a possible role in disease pathogenesis and making it a potential therapeutic target. While research in the area is still in its infancy, a number of studies revealed that pwMS are more likely to exhibit altered microbiota, altered levels of short chain fatty acids and secondary bile products, and increased intestinal permeability. However, specific microbes and metabolites identified across studies and cohorts vary greatly. Small clinical and preclinical trials in pwMS and mouse models, in which microbial composition was manipulated through the use of antibiotics, fecal microbiota transplantation, and probiotic supplements, have provided promising outcomes in preventing CNS inflammation. However, results are not always consistent, and large-scale randomized controlled trials are lacking. Herein, we give an overview of how the GBA could contribute to MS pathogenesis, examine the different approaches tested to modulate the GBA, and discuss how they may impact neuroinflammation and demyelination in the CNS.


Assuntos
Microbioma Gastrointestinal , Esclerose Múltipla/terapia , Animais , Autoimunidade , Modelos Animais de Doenças , Disbiose/imunologia , Disbiose/fisiopatologia , Sistema Endócrino/imunologia , Sistema Endócrino/fisiopatologia , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/microbiologia , Sistema Nervoso Entérico/fisiopatologia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiopatologia , Modelos Neurológicos , Esclerose Múltipla/etiologia , Esclerose Múltipla/microbiologia , Neuroimunomodulação , Probióticos/uso terapêutico
18.
J Mol Med (Berl) ; 99(10): 1399-1411, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34100959

RESUMO

A panel of 10 IgG enzyme-linked immunosorbent assays (ELISAs) were developed for the detection of anti-microbial immune responses in the cerebrospinal fluid (CSF) of patients with demyelinating diseases (DD). The anti-microbial ELISA assays follow on prior human brain tissue RNA sequencing studies that established multiple sclerosis (MS) microbial candidates. Lysates included in the ELISA panel were derived from Akkermansia muciniphila, Atopobium vaginae, Bacteroides fragilis, Lactobacillus paracasei, Odoribacter splanchnicus, Pseudomonas aeruginosa, Cutibacterium (Propionibacterium) acnes, Fusobacterium necrophorum, Porphyromonas gingivalis, and Streptococcus mutans. CSF responses from patients with demyelinating diseases (DD, N = 14) were compared to those with other neurological diseases (OND, N = 8) and controls (N = 13). Commercial positive and negative control CSF specimens were run with each assay. ELISA index values were derived for each specimen against each of the 10 bacterial lysates. CSF reactivity was significantly higher in the DD group compared to the controls against Akkermansia, Atopobium, Bacteroides, Lactobacillus, Odoribacter, and Fusobacterium. Four of the 11 tested DD group subjects had elevated antibody indexes against at least one of the 10 bacterial species, suggesting intrathecal antibody production. This CSF serological study supports the hypothesis that several of the previously identified MS candidate microbes contribute to demyelination in some patients. KEY MESSAGES: A panel of 10 IgG enzyme-linked immunosorbent assays (ELISAs) were developed for the detection of anti-microbial immune responses in the cerebrospinal fluid (CSF) of patients with demyelinating diseases, including multiple sclerosis and acute disseminated encephalomyelitis. CSF reactivity was significantly higher in the demyelination group compared to the controls against the bacteria Akkermansia, Atopobium, Bacteroides, Lactobacillus, Odoribacter, and Fusobacterium. Several of the demyelination subjects had elevated antibody indexes against at least one of the 10 antigens, suggesting at least limited intrathecal production of anti-bacterial antibodies. This CSF serological study supports the hypothesis that several of the previously identified MS candidate microbes contribute to demyelination in some patients.


Assuntos
Anticorpos Antibacterianos/imunologia , Bactérias/imunologia , Líquido Cefalorraquidiano/imunologia , Imunoglobulina G/imunologia , Esclerose Múltipla/imunologia , Polirradiculoneuropatia/imunologia , Adolescente , Adulto , Idoso , Autoanticorpos/imunologia , Líquido Cefalorraquidiano/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/microbiologia , Polirradiculoneuropatia/microbiologia , Adulto Jovem
19.
Rev. neurol. (Ed. impr.) ; 72(11): 397-406, Jun 1, 2021. tab
Artigo em Espanhol | IBECS | ID: ibc-227884

RESUMO

Introducción: Desde hace más de una década, tras el congreso ECTRIMS, se celebra en España la reunión Post-ECTRIMS, donde neurólogos expertos en esclerosis múltiple (EM) de toda España se reúnen para revisar las principales novedades presentadas en el ECTRIMS (en esta ocasión, celebrado junto con el ACTRIMS). Objetivo: En el presente artículo, publicado en dos partes, se resumen las ponencias que tuvieron lugar en la reunión Post-ECTRIMS, celebrada los días 16 y 17 de octubre de 2020 de forma virtual. Desarrollo: En esta primera parte se incluyen los últimos resultados acerca del impacto del ambiente y el estilo de vida sobre el riesgo de EM y su curso clínico, y el papel de la epigenética y los factores genéticos sobre estos procesos. Se discuten los hallazgos en investigación preclínica y clínica sobre los subtipos de linfocitos identificados, y la implicación de los folículos linfoides y la afectación meníngea en la enfermedad. Los cambios en la estructura cerebral se abordan a nivel microscópico y macroscópico, incluyendo resultados de técnicas de imagen de alta resolución. También se presentan los últimos avances sobre biomarcadores para el diagnóstico y el pronóstico de la EM, y sobre la afectación del microbioma en estos pacientes. Por último, se esbozan los resultados de registros de pacientes sobre el impacto de la COVID-19 en los pacientes con EM. Conclusiones: Ha habido nuevos datos sobre factores de riesgo de la EM, impacto de la EM a nivel celular y estructural, papel del microbioma en la enfermedad, biomarcadores y la relación entre COVID-19 y EM.(AU)


Introduction: For more than a decade, following the ECTRIMS Congress, the Post-ECTRIMS Meeting has been held in Spain, where neurologists with expertise in multiple sclerosis (MS) from all over the country meet to review the most relevant latest developments presented at the ECTRIMS congress (on this occasion held together with ACTRIMS). Aim: This article, published in two parts, summarises the presentations that took place at the Post-ECTRIMS Meeting, held online on 16 and 17 October 2020. Development: This first part includes the latest results regarding the impact of the environment and lifestyle on risk of MS and its clinical course, and the role of epigenetics and genetic factors on these processes. Findings from preclinical and clinical research on the lymphocyte subtypes identified and the involvement of lymphoid follicles and meningeal involvement in the disease are discussed. Changes in brain structure are addressed at the microscopic and macroscopic levels, including results from high-resolution imaging techniques. The latest advances on biomarkers for the diagnosis and prognosis of MS, and on the involvement of the microbiome in these patients are also reported. Finally, results from patient registries on the impact of COVID-19 in MS patients are outlined. Conclusions: There have been new data on MS risk factors, the impact of MS at the cellular and structural level, the role of the microbiome in the disease, biomarkers, and the relationship between COVID-19 and MS.(AU)


Assuntos
Humanos , Masculino , Feminino , Biomarcadores , /epidemiologia , Comorbidade , Esclerose Múltipla/epidemiologia , Neurologia , Doenças do Sistema Nervoso , Espanha , Esclerose Múltipla/genética , Esclerose Múltipla/microbiologia , Esclerose Múltipla/patologia
20.
Rev Neurol ; 72(11): 397-406, 2021 06 01.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-34042168

RESUMO

INTRODUCTION: For more than a decade, following the ECTRIMS Congress, the Post-ECTRIMS Meeting has been held in Spain, where neurologists with expertise in multiple sclerosis (MS) from all over the country meet to review the most relevant latest developments presented at the ECTRIMS congress (on this occasion held together with ACTRIMS). AIM: This article, published in two parts, summarises the presentations that took place at the Post-ECTRIMS Meeting, held online on 16 and 17 October 2020. DEVELOPMENT: This first part includes the latest results regarding the impact of the environment and lifestyle on risk of MS and its clinical course, and the role of epigenetics and genetic factors on these processes. Findings from preclinical and clinical research on the lymphocyte subtypes identified and the involvement of lymphoid follicles and meningeal involvement in the disease are discussed. Changes in brain structure are addressed at the microscopic and macroscopic levels, including results from high-resolution imaging techniques. The latest advances on biomarkers for the diagnosis and prognosis of MS, and on the involvement of the microbiome in these patients are also reported. Finally, results from patient registries on the impact of COVID-19 in MS patients are outlined. CONCLUSIONS: There have been new data on MS risk factors, the impact of MS at the cellular and structural level, the role of the microbiome in the disease, biomarkers, and the relationship between COVID-19 and MS.


TITLE: XIII Reunión Post-ECTRIMS: revisión de las novedades presentadas en el Congreso ECTRIMS 2020 (I).Introducción. Desde hace más de una década, tras el congreso ECTRIMS, se celebra en España la reunión Post-ECTRIMS, donde neurólogos expertos en esclerosis múltiple (EM) de toda España se reúnen para revisar las principales novedades presentadas en el ECTRIMS (en esta ocasión, celebrado junto con el ACTRIMS). Objetivo. En el presente artículo, publicado en dos partes, se resumen las ponencias que tuvieron lugar en la reunión Post-ECTRIMS, celebrada los días 16 y 17 de octubre de 2020 de forma virtual. Desarrollo. En esta primera parte se incluyen los últimos resultados acerca del impacto del ambiente y el estilo de vida sobre el riesgo de EM y su curso clínico, y el papel de la epigenética y los factores genéticos sobre estos procesos. Se discuten los hallazgos en investigación preclínica y clínica sobre los subtipos de linfocitos identificados, y la implicación de los folículos linfoides y la afectación meníngea en la enfermedad. Los cambios en la estructura cerebral se abordan a nivel microscópico y macroscópico, incluyendo resultados de técnicas de imagen de alta resolución. También se presentan los últimos avances sobre biomarcadores para el diagnóstico y el pronóstico de la EM, y sobre la afectación del microbioma en estos pacientes. Por último, se esbozan los resultados de registros de pacientes sobre el impacto de la COVID-19 en los pacientes con EM. Conclusiones. Ha habido nuevos datos sobre factores de riesgo de la EM, impacto de la EM a nivel celular y estructural, papel del microbioma en la enfermedad, biomarcadores y la relación entre COVID-19 y EM.


Assuntos
COVID-19/epidemiologia , Esclerose Múltipla , Biomarcadores , Sistema Nervoso Central/diagnóstico por imagem , Comorbidade , Exposição Ambiental , Epigênese Genética , Europa (Continente) , Substância Cinzenta/patologia , Humanos , Estilo de Vida , Subpopulações de Linfócitos/imunologia , Tecido Linfoide/patologia , Meninges/patologia , Microbiota , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , Esclerose Múltipla/microbiologia , Esclerose Múltipla/patologia , Neuroglia/patologia , Neurologia/tendências , Neurônios/patologia , Remielinização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...